AD-A278 869
ll“llllll 'AGE _ /}L

1o. RASTRICTIVE MARKINGS * u
3. 1AV TY OF R
Unlimited
B e YT Y YTt e
4. PERFORMING ORGANIZATION REPORT NUMBER(S) ) S. MONITORING ORGANIZATION REPORT NUMBMW(S
Technical Report Q,
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZA o
Cornell University (1f apphicable) Office of Naval Research g 5/ Q‘Q
6c. ADORESS (Cty, State, and 2P Code) ) 7b. ADDRESS (City, State, and 2P Code) &S ’
Department of Computer Science 800 N, Quincy Street
Upson Hall Arlington, VA 22217-5000
Ithaca, NY 14853-7501 Foington,
8a. NAME OF WI SPONSORING gb. ac;mcs SYM’OL 9. PROCUREMENT INSTRUMENT IDENTIFICATION ER
Office of Naval Research N00014~91-J-1219
8¢. ADDRESS (City, State. and 2P Code) 10. SOURCE OFf FUNDING NUMBERS
800 N. Quincy Street PROGRAM PROSECT TASK WORK UNIT
Arlington, VA 22217-5000 ELEMENT NO. I NO. NoO. ACCESSION N
11. TITLE (include Security Clasmfication)
Verification of temporal properties
12. PERSONAL AUTHON(S)
Limor Fix, Orna Grumberg
132, TYPE REPORT 13b. ME COVERED 14. OA PORT (Year, Month, S. PAGE COUNT
Inter FROM 10 9'2/%’[0,58 Den [ 20
i - =
16. SUPPLEMENTARY NOTATION
17. COSATI CODES | 18. SUBIECT TERMS (Continue on reverse f necessary and identify by block number)
feLo SRoue SUs-GRoue l program verification, temporal logic, branching time
| L A
19. ABSTRACT (Continwe on reverse if necomery and identify by block number)
The paper presents a relatively complete deductive system for proving branching time
tfzmp«md properties of renctive programs. No deductive system for verifying branching
time t.emptmsl properties han hoen presented before. Our deductive system enjoys the
following advantages. Fimst, given a well-formed specification there is no need to translate it
into a nonnal-form specification since the system can handle auny well-formed specification.
Second, given a specification to be verified, the proof rule to be applied is easily determined
according to the top level operator of the specification. Third, the system reduces temporal
verification to assertioual reasoning mather thau to temporal reasoning.
DTIC QU .ms.y [SeMmENIpol I §

0. OBTRIBUTION/ AVARABIUITY OF ASSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
DuncLassreoumumted [ samg as rev. CJonc users
228, NAME WOIVIOUAL

DD FORM 1473, s4Mman §3 APR edrtron may be used unt exhausted. SECURITY CLASSIFICATION OF THiS PAGE
All other editions are obolete.

_

220. TELEPHONE (Includie Ares Code) | 22¢. OFFICE SYMEBOL




Verification of temporal properties

Limor Fix*

Upson Hall, Computer Science Dept.
Cornell University, Ithaca, NY 14850

e-mail:fixQcs.cornell.edu
Tel:(607)(255-9223)
Fax:(607)(253-4428)

Orna Grumberg

AT&T Bell Laboratories
Murray Hill, NJ 07974
e-mail:orna@Qresearch.att.com

Tel:(908)(582-5641)

Accesion For

NTIS CRA&I g
DTIC TAB
Unannounced 0
Justification

By

Distribution]

Fax:(908)(582-7550) Avallability Codes

April 18, 1994 Avail and|or

Dist Spec‘a|

i

The paper presents a relatively complete deductive system for proving branchiug time
temporal properties of reactive programs. No deductive system for verifying brauching
time temporal properties has been presented before. Our deductive system enjoys the
following advantages. First, given a well-formed specification there is no need to translate it
into a normal-form specification since the system can handle any well-formed specification.
Second, given a specification to be verified, the proof rile to be applied is easily determined
according to the top level operator of the specification. Third, the systemn reduces temporal
verification to assertional reasoning rather than to temporal reasoning.

Abstract

Y g4-1343
T 8

*Pariially supported by the Office of Naval Research ander contract N00014-91-0-1219, the Naliowal Science Vaun-
dation under grant CCR-8701103, DARPA/NSE under graot CCR-9014363 and by Fullbright post-doctorat awaid,

94 5 04 036




1 Introduction

Temporal logics are widely accepted and frequently used for specifying concurrent and reactive pro-
grams. In recent years, many fully antomatic methods for verifying temporal specifications Lave been
preseuted such as model checkers [4]. However, the scope of these methods is still very limited: the
fully antomatic methods mainly apply to finite state prograius and to special cases of infinite state
prograuns. Therefore, the main tool for establishing that a progran satisfies its temporal specification
is still that of dednctive verification, using a set of axiomns and inference rules.

Deductive verification can also be aided by the compmter. A deductive verification systemn can
easily be embedded in automated theorem provers, like Nuprl [5], Hol [8], Boyer-Moore [3] and Coq
(6]. An antomated theorem prover is an interactive environment for proof generation. It assists the
development. of proofs by exploring the possible proof steps, checking and writing iutermediate results
and assembling the solution.

We present a velatively complete deductive system for verifying fair branching-time temporal logic
specifications (faiv CTL). No deductive verification systemn has been presented bhefove for faivr CTL. All
previous deductive systemns for verifying temporal properties, e.g., [16],{9},[17],[12],{15], awve concerned
only with linear temporal logic (LTL). The previous dednctive systems also suffer fromn the following
drawback. They offer a relatively complete deductive system only for normal-forrn forrmmlas, Thus,
all other properties whose expression in LTL does not fall into the restricted noymal-forrn can be
verified ouly by trauslating them into normal-form formulas. The kuown method for translating an
arbitrary (futnre) LTL formula iuto a normal-form is very cornplex in both the time complexity of the
trauslation and the size of the resulting forrula. First a tablean methiod is used to trauslate a future
fortnula into a connter-free w-antomata and then this antomaton is translated into a normal-form
forrnula [11], [18]. In coutrast, onr deductive system can handle an arbitrary nesting of temporal
operators i a forimila while 1o normal-form is required.

Our deductive systemn also enjoys the following two advantages. First, given a specification to he
vetified the possible mles or axioms to be applied arve solely detennined by the top level operator of
the specification. Moreover, in wmost cases, the uext possible mle to be applied is wniguely defined.
This property of the deduction system is very helpful when embedding the system in an antomted
theorem prover. Second, all mles in onr systemn reduce the task of verifying a temporal property
into subgoals that either require proving the validity of assertional forumlas or the verification of
sitnpler temporal properties. In other words, none of the generated subgoals require proving validity
of tenporal formulas.

Next we describe our work in some more details. The deduction system proves validity of correct-
ness forrmulas of the forn P Sat p — 7, where P is a program, p is a precoudition given in some
assertional langnage and f is a faiv CTL formmula. A program is defined as a set of transitions. A
progran step is executed by chioosing noudeterministically, in a weakly foir manner [7], an enabled
transition for execution. The weak faitmess guarautees that, every coustautly euabled trausition is
eventnally chosen for execution. Formulas of fair CTL are interpreted over a node in a compuration
tree of a program. Every temporal operator consists of a path quantifier together with one niodal
operator. A path (uantifier is either 4 for “all fair pathis™ or E for “there exists a fair path™. A
modal operator is either X for “next-state”, G for “globally”™ or U, for “until”. A correctness formmla
“P Sat p — [ is valid iff for every computation tree of P, the root node satisfies p — f, whete —
denotes implication (defined as nsmal).

Of special interest is the rule for verifying the formula P Sat p — EG fi. This fornmla specifies the
existence of o fair infinite path in the computation tree of P along which fy is contimously satisfied.




We prove that an infinite path is fair by showing that it consists of infinitely mauy finite fuir intervals.
A fair interval is an interval along which every transition is either disabled or execmted. To establish
that, we introduce a proof tool for identifying the end poiuts of fair intervals and iu addition we
forrumlate an inductive avgnment that implies infinitely many ocemrences of such end points along the
path (sce page 6).

The rest of the paper is organized as follows. In Section 2 the computation model is presented.
Section 3 defines fair CTL and corvectness formulas. Section 4 presents the deduction systemn and
au example is given in Section 5. In Section 6 we compare our deduction systen with CTL model
checking and discuss other verification approach.

2 The computation model

The model of computation we consider is a fazr transition system in which each transition 7 is a binary
relation over a set of states . g 70y is used to denote that (o1,02) € 7. We say that a transition 7
is enabled in a state o if there exists a state ' such that ore’. Otherwise, 7 is disabled. We denote
by En(r) the set of all states in which 7 is enabled. A program P over a set of states T is a set
of trausitions over £. We assumne the existence of a dummy trausition, 7%, which is enabled exactly
when all other transitions are disabled and which leaves the program state wnclianged. The dunmy
trausition ensures that all computations of the program ave infinite.

Next we formally define the meaning of a program as a set of marked trees. A node 17 is a finite
sequenice over the natural mmmbers. A free T is a set of nodes closed under the prefix operation. A
node g is an immediate suceessor of a node € if there exists a natural wunber n such that £ n = 1. The
root of a tree is the etapty sequence. Au edge e is a pair of nodes (€, 1) such that g is an immediate
successor of €. A path 7 fromn a node 7 is an infinite sequence g ... such that ;= 7 and for Al
i >0, 1ip1 is o immediate successor of ;. A marked tree is a triple < T, AL, M, >, where T is a tree,
M, is a fimction that maps every node of T to a state in . If A,(n) = » theu we say that g is marked
by 5. A, is a function that maps every edge in T to a trausition of P. A marked tree < T. 0/, AL >
is a computation tree of P iff the set of immediate successors of every node i in T is marked exactly
by the set of all states that are reachable from Ay (s) via the execution of a single transition of P
More formally, for every node 7 in T and for every state s in & and for every trausition 7 of P

(A'{n(’ll ).¥) €7
iff

i an immediate snccessor of mo: Ma(i2) = s AM(mmop) =71

Fiually, the meaning of a prograun P is the set of all computation trees of P.

A transition 7 is enabled in a node 5 in a computation tree < T, AL, AL, > iff 7 is cuabled in
Mu(n). 7 is executed Along a path = = mg ... of the computation tree iff there exists 1 > 0 such that
M (i 1ig1) = 7. A path # = my, ... in a computation tree of P is foir iff for every transition 7 of
P, if 7 is contimously enabled from some point along = then 7 is infinitely often executed along =.
Note that, every finite prefix of a path can be extended to a fair path and that every path witloan
infinite suffix of 7° executions is fair.
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3 Fair CTL and correctness formulas

Assume an assertional language L whose formmlas ave interpreted over £, VA fair CTL forumla is
cither a formla from L or, = fy, fi A fa, AX A, EX fi, AGhH, EG fi, A[fidf2], and E[fild f], where
fi and fy are faiv CTL formulas. Fair CTL formulas are interpreted over a node in a marked tree,
Given a node 5, a marked tree MT aud a fair CTL formula f, the satisfaction relation MT,y |= f is
defined by induction on the strncture of the formula. Intuitively, an assertion pin L is satisfied at o
node 7 iff the state that marks g, that is M (n), satisfies p. ~f and fi A fp ave defined as nsnal. AN f,
(EX fi) is satisfied at g iff every (at least one) immediate successor of n satisfies fi. AGf (EGf)
is satisfied at g iff every node in every (at least oune) fair path from g satisfies fi. Finally, A{fil{ f2]
(E[fild f2]) is satisfied at 5 iff every (at least one) fair path from g satisfy fi nutil fo, i.e. there exists
anode i along the path that satisfies fo and every node from n to 1) satisfies fi. The set of operators
presented above is not minimal, for example, the operators AG and EG can be expresses in tenns of
AU and EU, vespectively. We clioose to introduce a wider set. than necessary in ovder to shplify the
presentation of the proof mles.

A fuir CTL correctness fortmula consists of three components: a precoudition p in L, a programm P
and a fuiv CTL formmula £, and is of the form P Sat p — f7. A forinula “P Sat p — f7 is interpreted
over the root node of a computation tree of P A faiv CTL corvectness fornla is walid, to he denoted
E P Sat p — f.iff for every computation tree of P the voot node satisfies p — f.

An assertional correctness forinula cousists also of three cormponents: p and ¢ in L and a set of
transitious T, and is of the form ={pIT{g}". A fornmula “{p}T{g}" is interpreted over a paiv of states
(71,02) such that there exists 7 € T for which 1702 holds.  An assertional correctuess formula is
salid, to be denoted = {p}T{q}, iff for every transition 7 in T and every pair of states (ay.02) such
that oy7oy holds: if oy = p then oy = 4.

4 The deduction system

T this section we present our deductive system. Proof rules of special interest ave explained iu details
aued their soundness is motivated. The completeness proof is postponed to Appendix A.

4.1 The nerl-rules

To verify a specification of the form P Sat p — AX fi, we require that every transition of the progian
P that starts in a state satisfying p vesults in a state satisfying an assertion q. Aund moreover, if
denotes the program left to be executed after the execution of a single step of P then every root node
of a compntation tree of P’ that satisfies ¢ should also satisfy fi. Since a program in our model s
a siugle control point the program left to be executed after perfonning a siugle step of the program,
is the program itself. Therefove, we got:

{r}P{q}
P Sat q — [y

P Satp— AX f

"\We assume L s expressible enough to formalize all the sels of statex required for the relative completeness of o
system. Axis known [18),[14], L shoulil al teast inclide Lhe predicate calealis, interpreted symbols lor expressiog the
standard opeeations and refations over integers and the lixed-point operators e and v.




To verify a specification of the forrn P Sat p — EX fi, we require that there exists a trausition 7 in
P such that 7 is enabled in all states satisfying p and its execution results in a state satisfying an
assertion ¢. And moreover, every root node of a computation tree of P that satisfies ¢ also satisfies
h:

There exists 7: p — En(r) and {p}r{q}

P Sat g = fi

P Sat EX f,

To verify the negatious of the above two specifications we relay ou the following fair CTL validities:

—~AXfy = EXAf,
SEXfi = AXf

Thns we get:
P Sat p — EXAf,

P Satp—-4AXf

and

P Sut p — AXAf

P Satp = -EXf

4.2 The unti-rules

Next we present couditions for verifying P Sat p — A[LUL], where Iy aud I ave in L. Let a prefix
of a path in which all nodes satisfy =l be called L-avoiding. We have to verify that all Ir-avoidiug
prefixes that start in roots satisfying p are finite and that L is contimously satisfied along these
prefixes. The following verification conditions establish a well-founded induction on the length of
the I-avoiding prefixes. The induction hypothesis assumes that all nodes along Ir-avoiding prefixes
satisfy some state predicate @ and that a vauking function & is defined for all states that mark rhese
nodes, where & maps states into a well-founded, partially ordered set. (W, <). Moreover, the indnction
hiypothesis assutnes that the ranks defined by 6 along an L-avoiding prefix never increase. Iu the
induction basis we deal with the case of I-avoiding prefixes of length zero. We require that every
state that satisfies p also satisfies either I or it satisfies @ and & is defined for that state (denoted hy
deW)
AUL p=(Liv(®A(fEW)))

In the induction step we require that every trausition of the programn that starts in a state sarisfving
® aud for which a rauk w is defined by & results in a state that either satisfies I or it satisfies b
it is mapped by 6 to a rank lower or equal to w:

AU2. {PA(S=u)}P{I, V(P A(S <))}
We add the requiremnent. that every state that satisfies @ also satisfies Iy:
AU3. &= 1)

Cowditions AU1-AU3 gnarantee that every path in a computation tree of P from a root satistviug p
satisfies Ty as long as I is not satisfies. To ensure that I will eventually be satisfied we relay ou the




fairuess of the computation model, the well-foundedness of W and the additional requirement. that
for every state that satisfies & A (8 = ) there exists an enabled transition of the program whose
execution results in a state that either satisfies I or satisfies ® and for which a lower vauk than w is
defined by é: |
AU4A. For every w: € W there exists T € P :
(1) (PA(f =uw)) = En(r)
(2) {2A(E=w)}r{LV(BA(S<u))}

The fairness of the computation model implies that a transition that causes the rank to decrease will
eventually be executed and the well-foundness of W gnarantees that ouly finitely many tirnes the rauk
can decrease and therefore a node satisfying I must be reached. Thus, we get:

AU1 - AU

P Sat p— AlLUL)
where [, I € L

A specification P Sat p — E[LUT), where Iy, I € L, is verified by the above verification conditions
AU, AU3 and AU 4. Condition AU2 is omitted in order to relax the set of verification conditious such
that they only imply the existence of a fair path with a finite prefix go7n ... 75 such that 8(2Z,(m)) >
S(AW(m)) > ... > M (1:)), 1 satisfies I and every other node along this prefix satisfies Ir:

AU AU, AU4

P Sat p — E[LhUL]
where Iy, Iy € L

To verify a specification of the form A[fild f2], where either fi or fz is uot in L, we decompose the
verification task into three subtasks. One requires that every path in a computation tree of P that
starts in a node satisfving psatisfies Iy nutil I, where both I and I are in L. The other two require
that every root of a computation tree of P that satisfies I or I also satisfies fi or fy, vespectively:

P Sat p— A[LUT)
PSatl; = fi
P Sut Iy — fo

P Sat p— Alfid f2]
where fy @ L or fo € L.

Again the sounduess of this rule relies on the fact that a programn has a single control point wul the
program left to be executed after performing oue or more steps, is the program itself.

To verify a specification of the form P Sat p — = A[fild fo] we relay ou the following faiv CTL valid
foruumla:

A[fill f2] = (EG=f2 V E[(~f)U(-fr A= f2)])




Thus we get:
P Sautp— EG-f2
or

P Sat p ~ E[(~f2)U(=fi A=f>)]

P Sat SA[fild f3)

To verify a specification of the form P Sat p — =E[fild f2] we observe that there does not exist
a fair path that satisfies fy wutil fo iff either = fy A = f2 holds at the root or there exists an assertion
I that holds in every node of every path from the root uutil =f; A = f holds and in addition I must
iply - f;. Tlms we get:
P Satp— (-fiA=f2)

or

p—=1T1
PSatl = =f NAX(IV(-fi A f2))

P Sutp — =E[fild o]

4.3 The global-rules

Next we present couditions for verifying P Sat p — EG fy. To prove that a path is fair we exploit ihe
following observation, takeu from the completeness proof for the weak fair termination mule iu {10): a
path 7 in a computation tree of P is fair iff for every transition 7; of P, either 7; is infinitely often
disabled or 7 is infinitely often executed along x. Note that, along every path the dummy trausition
7* is either disabled or coutimously execnted from some point on. Thus, we can relax the above
condition and conclude that a path = is fair iff for every non-dummy transition 7;, i.e., 7; is not equal
to r°, either 7; is infinitely often disabled or 7; is infinitely often executed along x. This implies that
7 can be partitioned into infinitely many disjoint. intervals of finite length, each of which contaius for
every nou-dummy transition 7;, either a state in which 7; is disabled or a step in whicli 7; is executed.
We call such an interval fair. Thus, a path is fair iff it can be partitioned into infinitely many finite
fair intervals.

A proof tool for identifying the end points of fair intervals, is introduced next. Let P be a progran
with m non-duinmy transitions 7y,..., 7, and let dis : £ — {0,1}™ be a function that maps a state
7 to a binary vector of length m such that dis(a)(j) = 0 iff the transition 7; is disabled in 0. Let
0 (1) stands for a vector of m veros (ones). And for a natural mmber j let j be a vector of m ones
except that if 1 € j < m then the j-th element in this vector is zero. Let A be the point wise logical
conjunction of hinary vectors. For example, let 1w = 3 and dis = 101, the value of the expression
TA3 Adis, that is 111 A110 A 101, is equal to 100. We use a function g fromn the program states to
{0,1}™ and require the following proof obligations that ensure that g = 0 indicates the end of i faiv
iuterval. The coudition

EG1. p— (y € {0,1}")

reguires that initially ¢ is defined. The condition
EG2. Foreveryry € P: {y=0}r;{y= (7 A dis)}

requires that the first step taken after the end of a fair interval results in a state in which the vidue of
g is veset, that is, g = (un,. .., wy) where wy; = 0 iff 7; is disabled at the current state or 7; haw just




bheen executed and wy; = 1, otherwise. The condition
EG3. For every 7; € P and every W € {0,1}™: {y=TAT # 0}7j{y = (FA] A dis)}

requires that g assigus w; = 0 to states within a fair interval iff 7; has either been executed or lias
been disabled iu that fair interval.

Introducing the above method for identifying the end points of fair intervals, we still liave to prove
that there exists a path aloug which infinitely often an end of a fair interval is encountered:

EG4. T—-y=0
EG5. P Sutp— E[Hili(I A fr))
EG6. P SatI — EXE[filU(IA fr))]

The condition EG4 sets the connection between the satisfaction of I and the end poiuts of fair intervals.
Conditions EG5 and EGG ensure that theve exists a path in which I holds infinitely often and moreover
fi contimounsly holds along that path. Thns we get:

EG1 - EG6

P Sat p— EGfi

To verify the other global specifications we relay on the following fair CTL validities,

AGfr & -1E[f.1”ll.(z’ U"'f'l]
SEGfi « Altrue U-fi]
—AGfr & E[true U-f;)

which imply:

P Sat p — =E[true U= fi] P Sat p — Altrue U= fi] P Sat p — Eftrue U=fi]

P Sut p — AGfi P Sat p — -EGfi P Sat p — =AGfi

The entire dednctive system is presented in Figure 1.

5 Example
Cousider the simple program,

P: n: ao:=c+1 i 2<10

T2 y:=5 if 5<xAy=0

|

3

which has three transitions. Transition 7 increases the value of 2 by 1 and is enabled whenever the
value of 2 is smaller than 10. Transition 72 sets y to 5 and is enabled whenever the value of .+ is




bigger than 5 and the value y is equal to 0. Trausition 73 is the dummy transition. Next we verify
the comrectuess forrmmla:

P Sut :=0Ay=0—EG(x<10—y=20)

This specification implies that there exists a fair computation of P in which the execution of the
second transition is postponed until the first one is not enabled any more. Let

0= 00 f0<z<5Vy#0
=1 o ifa>5Ay=0

We prove that the premises EG1 — EG6 hold:

e EG1. According to the definition of g, 2 = 0A y =0 — g = 00 holds.

o EG2. According to the definition of g if ¢ = 00 then 0 < o < 5V y # 0 holds. Therefore,
transition 7 is either not enabled or its execntion results in a state in which g = 0Oc, where
c=1ifxz>5Ay =0 and ¢ =0 otherwise. According to the definition of dis, the valne of
the expression 01 A dis is Od, where d = 1if 22 > 5A y = 0 and d = 0 otherwise. Thus, in the
resulting state g = (01 A dis) and we conclude that

{g =00} {g = (01 A dis)}
holds. Transition 73 is not enabled in a state satisfying 0 < 2 < 5V y # 0. Therefore
{9 =00}y {g = (10 A dis)}

Lolds. For transition

{9 =00}r; {y = (11 A dis)}
holds since either 737 is not enabled or it is enabled and in both starting and resulting states

dis = 00 and ¢ = 00.

o EG3. According to the definition of g, ¢ = WA W # 0 implies that g = 01 aud tlms the
corvesponding starting state satisfies 2 > 5 Ay = 0. Transition 7y is either not enabled or its
execution results in a state satisfies 2 > 5 Ay = 0. Therefore according to the definition of g in
the resulting state g = 01 holds. The value of the expression 01 A 01 A dis is equal to 01 since
72 is enabled in the resulting state and thus

{g =01} {g = (01 A 01 A dis)}

Lolds. The execution of 7 from a state satisfying 2 > 5 A y = 0 resnlts in a state satisfving
2> 5Ay # 0 and therefore g = 00 in the resulting state. The value of the expression 01 A 10 A dis

is equal to 00 and thus
{y =01} {y = (01 A 10 A dis)}

holds. The transition 73 is not enabled in a state satisfying @ > 5 Ay = 0 and therefore
{y=01}r3{y = (01 A11 A dis)}

holds.




EGL Let I=(0<2<5Ay=0)V(z210Ay #0). According to the definition of g we get:
I—-4=00

EGS5. Next we prove that
PSutx=0Ay=0—=E[(2<10 > y=0UIA(x<10—=y=0))

Using first order manipulation the assertion (IA(z < 10 — y = 0)) can we rewritten as (0 < r <
5Ay=0)V(y#0A2>10). Let 3=0< 2 <10Ay =0 and W = {true, fulse} x {0..10} with
lexicographical order where < false, 0 > is the minimal element. We define 6 =< y =0,10—r >.

—ATL a=0Ay=0—=BA (W)

-~ AU 0<2<10Ay=0—- (2 <10 =y =0).

— AU4. For & =< true,d >, where 1 < d < 10 we get

(1) PAE=<true,d > A1 <d <10 —= En(n)
(2) {PAS =< true,d > A1 <d <10} {P AE =< true,d - 1>}

For & =< true,0 >, we get

(1) ® A8 =< true,0 >— En(ry)
(2) {® NS =< true,0 >}r{y #0A 2 > 10A & =< fulse,0 >}

For 8 =< fulse,d >, the assertion ® A & =< false,d > is fulse and therefore both reguire-
ments (1) and (2) hold for any transition.
EG6. Next we prove that.
(¥*) PSat] - EXE[(x <10 =y =0U(IA (2 <10 — y =0))
Recall that I = (0 <2 <5Ay =0)V (2 > 10 Ay # 0) therefore (*) holds iff
(1) PSat 0 < <5Ay=0—> EXE[(2 <10 = y=0U(IA(x <10 = y =0))]
holds and
(2) PSat 210Ny #0—=CXE[(x <10 —=y=0U(IA(x <10 — y =0))]
holds.
To prove (1) we apply the nestrule for proving EX and get the following subgoals:
(11) 0<2<5Ay=0—-2<10

(12) {0<2<5AYy=0n{0<2<6AYy=0}
(1.3) PSut0<2<6Ay=0—-E[(x<10=y=0U{IA(2<10—y=0))

It is easy to see that (1.1) and (1.2) hold and (1.3) is proved using & and & just as in EG5.
To prove (2) we apply the mle for proving EX and get the following subgoals:
(21) 2210Ay#0=> En(13), where En(13) =22 10Ay #0

(22) {£+210Ay #0}r3{s: 2 10A y #0}
(23) PSatz>210Ay#0—E[(2<10—=y=00U(IA(x <10 —y=0))]

It is easy to see that (2.1) and (2.2) Lold and (2.3) is easily proved using ® = false and auy &,
We can choose @ and & as such since the precondition implies the second argument of the nuil
specification, that is, 2 10Ay #0 = TA (2 <10 = y =0).




6 Discussion

CTL model chiecking [4] is a verification algorithm that given a program described as a finite-stare
transition graph, a state iu the programn, and a formmula in propositional CTL, detennines whetlier or
not the computation tree of the program, starting at this state, satisfies the formula. It is juteresting
to notice the similarity and difference between the model checking approach and ours.

Both wethods are sitnilar in that, the verification of a formmla depends on the verification of its
subforumlas. Moreover, they are both syntax directed, i.e., the rule (or procedure) applied in the
vertfication of a formmla is determined by the formula’s top level operator.

One of the differences between the methods stems from the fact that while [4] solves a recmsive
problem, we snggests a method for a non-recnrsive one. As aresult, model checking suggests no special
mles for negated formmlas. To detertnine whether or not a formula =@ is true in o state they check
O at this state and complement the result. Dealing with a non-recursive problem. onm method ciamaor
expect, in general, to get a negative answer. Tlms direct rules to handle negation as the tap level
aperator are introduced.

Tn [}, & more general notion of faitness is cousidered. Therefore, handling fairness equires o
prefimimaay step, that marks all state from which a fair comuputation starts ( they all satisfy some
proposition Q). To chieek now that E[fild f2] is time iu a state, they check that E[fild(f2 A Q1) s
trne in that states Tu this case, our methaod is simpler. Siuce from every state there is a fair weak
computation starting at this state, we can verify E[fild f2] as if no faivness is concerned.

The case of AU is solved iu [4] by using E and EG. Their procedure for G lieavily depeids
on the finiteness of the program deseription, and iuvolves grapl manipulations, Clearly, o snila
method is not applicable to onr case. To conclude, both methods are similar in the way they ke
advantage of the stimcture of CTL formnmulas. As expected, they diverge significantly in the way they
exploit properties of the program description.

Other verification approach’ that can handle general liveness properties were introduced e the
antomata theovetic friunework. In {1],[2],[13] assertional verification conditions are presented for veri-
fving properties which ave specified by finite-state antomata. Those vesults are extended in [20] to e
with praperties specified by recursive w-antomata. In coutrast, we specify properties ina reliainely
intnitive and high level temporal Tanguage aud no antomata is coustrneted,
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A Relative completeness

To prove the relative completeness of our deductive systemn we first prove that there is no civenlarity
in the systems. That is, we prove that every premise of every nmile can be verified by applviug less proof
rules than required for the verification of the goal of the rle. To do so, we introdnce a wmapping ¢
that waps every fair CTL forinula to a natural number. Then, we show that for every rale of the fonn

P Sat gy — &,

P Sat pp — &,

PSatp— &

the relation o(®;) < (P) holds for every 1 < ¢ < m.
The fanction g is:

oif f L then off) =1,

o if f=fi Afathen o(f) = (i) + el f),

o if f=EXfior f=AXfi then o(f) = (/1) +1,

o if f=A[LUS] or f=E[[US] then p(f) =2 x (e{ 1) + el 2)).
o if f=EG/i then o{f) =4 x p(f1) +4,

o if f=AGH then o(f) = (2 x (A fi))* + 4%,

o if f=f1 then o(f) = (e(1))*.

Here we demonstrate the above for only one mle:

P Sat p — Altrue U=fH]

P Sut ~EG f,
According to the definition of p we get:

o Atrue U=£i]) =2 x (1 + (o(/1))?)

and

A~EGfi) = (4 x po{fi) +4)*.

It is easy to see that o(~EG fy) > p(A[ true U= ).

Since there is no circularity in the systemn the relative completeness of the system can be proved
by separately proving the relative completeness of every proof rule. We bring here some of the more
interesting proofs.

o The assertion rule:
P—=1q

P Satp —q
Forqe l
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Assume |= P Sat p — . Thns for every computation tree of P if the root node satisfies p they it
satisfies g as well. Since every state in the state space can serve as a root node for a computation
tree of P we can conclude | p — q.

¢ The 4X rule:
P Sat q — f;

{p}P{q}
P Satp— AX fi

Assume = P Sat p — AX fi. Thus for every computation tree of P if the root uode 5 satisfies
p then every immediate successor of 5 satisfies fi. Let g be an assertion that Lolds exactly at
all immediate successors of root nodes that satisfy p. The program left to be executed after the
execution of any transition from P is P itself, therefore, = P Sat g — f;. Moreover, for every
7 € P aud every pair of states (o7,02) such that oy707 holds: if 0y |= p then a4 | ¢, that is,

= {r}P{q}.
¢ The ~AX rule:

P Sat EX-fy

P Sut -AX fy

The refative completeness of this rile is a consequence of the validity of the fair CTL forinula:
EX-fi = -AXfy

First direction, the formula EX=f; holds at a node 7 in a marked tree MT iff there exists
an immediate successor iy of g such that g does not satisfy fi. Therefore not all immediate
successors of g satisfy fy, that is MT, | -AX fi. The second direction is also easy, omitted
here.
e The -4U rule:
P Sat p— EG-f,

or

P Sat p — E[(=f2)U(~fi A~f2)]

P Sat ~A[fild f>]

Agnin, the relative completeness of this mle is a consequence of the validity of the fair CTL

formnula:

(EG-f2) V(E((~f2)U(=fr A=f2)]) = —Alfild fo]

First direction, the fortnmla (EG-f2) V (E[(~f2)U(~fi A =f2)]) holds at a node 7 in a minked
tree MT iff either there exists a fair path from 5 in which = f; contimously holds or there exists
a faiv path from n such that = f holds in an initial prefix of that path uutil = f; A =f, holds,
Tlms, we can conclude that there exists a fair path from 5 in which fild f does not hold, tlat
is, MT, y = =A[fild f2). Using similar consideration the secoud direction can also be proved,

o The EG rule:
EG1 - EG6

P Sat p — EG fy

13




Assuine = P Sat p — EG fi. Thus for every computation tree of P if the root node satisfies p
then there exists a fair path that continmously satisfy fi. We trauslate P into another programn
P’ by adding to P an history (auxiliary) vaviable . Initially, the value of & is the empty sequence
é. Every transition 7; in P is translated into

75 | hi=h oo o}
That is, the state at which 7; is executed (i.e., o) and the index mumber of 7; (i.e., j) are

concatenated to h.
Let T be the set of all computation trees of P’ such that their root node is marked by a state
satisfying pAh = e.
For every state ¢ that marks a node in a tree in T we define the value of the fuuction ¢ as
follows:

— The states that mark root nodes are mapped by ¢ to the vector T.

— If a node 7 is marked l)v o and g(o) =W, where @ :,é 0, then every state o’ that m«nks an
imnmediate successor 1 of 7 is mdppe(l by g to WAF Adis, where j is s.t. Ma(1, 1) = 7j
and dis is evaluated at the state 7\[,,(1, )

~ If a node 7 is marked by o and g(o) = 0 then every state ¢ that marks an immediate
snccessor 77 of 7 is mapped by g to 7 Adis, where j is s.t. M(y, r,') = 71j and dis is
evaluated at the state M, (7).

The above partial function g is well-defined since every two states that mak nodes in 7 (of
either different trees or of the same tree) are different since h has different values.

We define I to be the set of all states that g maps to 0. Next we prove that the premises
EG1 - EG6 hold for the above g and I and the precondition p Ak =e.

— EG1. Every state that satisfies p A b = € marks a root node of one of the trees in T and
every such state is also mapped by g to 1, therefore

FEpAh=¢c— (g€ {01}
— EG2. According to the definition of g:
For every 1; € P : {g = 0}rj{yg = (7 A dis)}
— EG3. Again according to the definition of g:
For enery 7 € P and every W€ {0,1}™ : {y=TAT £ 0}rj{g = (W AT A dis)}
- EG4. Immmediate from the defiuition of I we get
EI—=g=0

- EG5 -~ EG6. Assuming the relative completeness of the other rules it is sufficient to prove
that conditions EG5 ~ EG6 are semautically trne. By the initial assumnption we know 1hi
in every computation tree of P’ that starts in a state satisfying p A h = ¢ there exists a faiv
path that continmously satisfy fi. According to the definition of 7 and g and the observation
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that every fair path can be divided into infinity many fair intervals we can conclude that I
holds infiuitely mauy times in that fair path. Therefore,

E P Satp— E[LUI A fi)]

aud

k= P Sut I — EXE[fiU(I A f1)).

¢ The basic-AU rule:
AUl = AU4

P Sat p — A[LUI)
where [, L € L

Assume = P Sat p — A[LUD). Given a computation tree MT' =< T, M, M, > of P that
starts in a oot node gy satisfying p (i.e., M, (m0) = p) we know that every fair path fromn
no satisfies 14T, To prove the relative completeness of the mle we have to find an assertion
&, .a well-founded, partially ordered set (W, <) and a partial ranking fanction & such that the
premises AUL. — AU4. hold.

We start by truncating MT' into a smaller tree MT =< T, M,, M. > iu the following way.
Every fair path from the root is truncated exactly after the first node that satisfies L.

According to the assunption = P Sat p — A[LUL)] we know that MT has either infinite unfaiv
paths or finite paths in which all intermediate nodes satisfy I and the leaf nodes (nodes that
liave no successors) satisfy I, Next we conustiuet another marked tree that will have ouly finite
paths. First we need some definitions.

A path 7 is 7-avoiding if and only if 7 is enabled at every node in 7 and moreover 7 is not
executed aloug 7. A CONE.(7) is the set of all nodes in MT residing on infinite 7-avoiding
paths starting from the node 7. 7 is called the CONE's déirective. A path = in MT is learing
a CONE.(n) at a node m if oy is in 7 and 1y also belongs to CONE, (1) and the node which
immediately follows 7y in 7 does not belong to CONE, ().

Next we inductively define the construction of another marked tree, to be denoted MT* =<
T* M3, M} >. The fanction M, maps each node of T* to a subset of T and the function M)
maps each edge of T* to a transition of P.

At the base step we define the value of M for the root of the new tree MT*. In the induction
step we assume that the subtree of MT* of depth n is alveady built. We define for each leaf £ 2
of depth n the set of its immediate successors &, ..., & in T*. We also define for eacli successor

& of £ the value of M3(§;) and the value of M (£,§;).

To define the base and the induction step we need a function RT : T° — T which mnaps each
node in T* to a node in T. This function is also defined indnctively. Let 7o and & denote the
roots of MT and MT*, respectively.

Base Step: If there exists in MT a 7-avoiding path starting from the root gy for some 7 € P
theu A (&) = CONE,.(1a). Else, AL (&) = {in}. Tu both cases we define RT(&n) = .

D ! .
1n Lhe sequed nodes of M) ace denoled by Lhe symbols g, ... 0r 4 and Lthe nodes of M1 are denoted iy the
’
symbols £, &ps. .. 0r § .
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Induction Step: Let § be a leaf of depth n and let RT(€) = 5. We add immediate suceessors
to € according to the following clanses:

- If M (€) = CONE, (1)) then for every path = in MT leaving CONE.() we add to § an
immediate successor & in MT* and we define RT(&) = i, where 1 is the first node in =
after = leaves CONE,(n) and M (£.6,) = M.(i/ , 1), where ' is the predecessor of 1 in 7.

- If M3 (€) = {n} where 7 is not a leaf in MT we add for every immediate successor i of 5
an immediate successor & to §. We define RT (&) = m and M (&,&) = AL(n,m).

—~ If M3(€) = {n} where 77 is a leaf in MT then £ is a leaf in MT* and RT(§) = 1.

Next, we define M) for all nodes added in step n + 1 of the induction. Let & be such a node.
Two cases:

—~ If there is no 7r-avoiding path starting from RT(€) in MT for auy 7 € P theu M (€) =
{RT(£)}-

~ Otherwise, consider the set S of all transitions, 7, for which there is an infinite r-avoiding
path starting from RT(€) in MT. Let 1y be the transition chosen least recently, possible
not at all, as a CONE's divective aloug the sequence M) (&n), M (&), ... AL (€n-1), whiere
&€ ... En-r€ is the path from the root to £ in MT*. We define M;(€) = CONE,,(RT(§)).
In the case there are more than one such transitions in S the transition with the smallest
index (assmmne all transitions in P are indexed) is chosen.

Lemma A.l:

— For every node § in MT*, RT(£) € M (€).
~ For every two nodes & and & in MT*, M (&) N AL (&) = 0.
- MT* covers MT, i.e., every node of MT belougs to some AL (€), where € is a node of MT*.
Proof:
~ According to the definition of MT*, AM3(€) is either {RT(€)} or CONE, (RT(£)) in both
cases RT(€) € My (§).

~ According to the definition of MT*, at every step of the induction Mj(§) contaius nodes
of T that are not included in any previously defined M2(£'). Moreover, if & and & are
added to MT® in the same induction step then RT(&) and RT(&2) do not reside ou a
common path in T. Therefore according to the definition of My and the tree structure of
T, M3 (&) N M (&) = 0.

~ Accordiug to the definition of MT*, the root of MT* covers the root of MT aud in the
induction step, given a node £, all immediate successors in T of nodes in AL7(€) are covered.

Lemma A.2: The tree MT® is well-founded, i.e., contains finite paths only.
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Proof: Assume there exists an infinite path #° = && ... in MT*. According to the defiuition
of the function RT the nodes RT(&n), RT(§,),. .. are nodes in MT. Moreover, according to the
definition of MT* there exists a path = = gorp ... in MT such that for every { > 0, RT(&i41)
belongs to 7 and it appears in # after, but not necessarily immediately after, RT(&;). Since the
sequence RT(&), RT(&),. .. is iufinite, * is also infinite and thus, unfair.

Therefore, there are several (at lease one) trausitions such that from some point on in = are
coutimously enabled but are never selected for execution. Let 7 be such a transition with the
smallest index and let x; = RT(& )i nk+1 - - . be a suffix of & which is 7-avoiding and which starts

fromn RT(&;).

Twao possibilities:

— 7 is not selected as a CONE's divective along A5 (), AL (&) ... AL (&) then according
to the definition of MT*, M (&) = CONE,(RT(&;)).

- 7 is selected as a CONE's divective dlong M3 (&), Mi(&) ..., My (&i=1) then according to
the definition of MT* there exists j > £ snch that 7 is least recently selected as a CONEs
divective aloug M (o), Ma(&1) ..., My(&i-1) and thus M (&;) = CONE,(RT(&;)).

Let & denote ¢ if the first case holds and j otherwise. In both cases, the infinite tail of = which
is r-avoiding is contained in CONE(RT(&;)). Therefore, all the nodes RT (&r41 ) RT(&x42), - -

are coutained in M (&), a contradiction to Lemnma B.1. O

Based on the properties of MT* proved in Lemmas B.1 and B.2 we next contime the Alf-mle
completeness proof. Both trees MT and MT* are coustructed for a specific initial state oy
that satisfies p, i.e., the root node of MT is mapped by A, to ga. Iu order to get 1id of the
dependency of the trees on o we combine all trees MT such that their root node is mapped
to a state satisfying p into an infinitary tree MT =< T, 3,3, >. A uew root is added and
its immediate successors ave all the trees MT s.t. M, (in) | p. Similarity we combine all AIT*
trees into an infinitary well-founded tree MT° =< T°, 33, 37 >.

Next, the nodes of MT® are rauked by countable ordinals. All leaves are ranked with 0, am
intermediate node is ranked with the successor of the least upper bound of the rauks of its
immediate successors. In order to rauk uodes with a unique vank a rank-shift is perforined. Let
o(€) denote the rank defined for node & by the above procedure.

Let Q be the set of all nodes in MT that reside ou finite paths and are nor leaves weithier the
root. of MT. We define ® to be the assertion satisfied by exactly all states that mark the nodes
in Q, that is:

= {o|3: o=M()AneQ}

We define the ranking function 8 to be:

Soy=w iff 3B:B#0ADBC T A € B & ae M,AT(E)) Aw = min( U (§))

{eB

Next we show that the premises AUL. = AU4. hold for & and & above,
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- AU According to the construction of MT all states that satisfy p mark at least oue node
in MT. Moreover, every state that satisfy p either mark a node in Q (tlms it satisfies )
or a leaf of MT (recall that every leaf n in MT satisfies M () | Iy) therefore

Ep—dVI

Moreover, MT" covers MT and therefore the ranking fuuction 6 is defined for every state
that mark a node in MT. In paticular, all states iu p mark nodes in M7 aud thus

Ep—(eW)

— AU2. From every state o that satisfies ® and &(o) = w the execution of any trausition from
p leads to a state that mark either a leaf of MT and therefore Ip is satisfied or it leads to a
state that mark an internal node (not a leaf) n of MT. Siuce every finite prefix of a path
can be extended to a fair path 7 € Q and therefore M, (1) | ®. Thus,

{® A& =w)}P{L, Vv B}

Moreover, according to the definition of MT® if o marks € in T° then any transition of P
leadds to a state that either mark € or mark an immediate snccessor of € and therefore

{BA(E=w)}P{(6 <w)}

~ AU3. Accordiug to the construction of MT and the definition of Q all nodes in Q are
marked by states satisfying Iy therefore

=& — I

— AU4. Given w: € W if there does not exist a state o such that 0 | @ and &(o) =« then
E ®A(8 = w) e fulse and therefore both conditions in AU4. hold vacmously.

In there exists a state o such that o = ® and (o) = w then IE € MT* such that o(§) =
and o0 € ML (M7(£)). Consider two cases:

Case 1: 33(¢) = CONE, (RT(£)).

According to the definition of CONE,, 7 is enabled in all states o' such that

o' € M,(CONE,(RT(£)) therefore o |= En(t) and we conclude

E(®A(S =) — En(t)

According to the definition of CONE, every r-move leaves CONE,(RT(£)) and therefore a
r-tmove reaches an immediate successor € of € in MT°. Since the nodes in MT® are vanked
leaves up we know o(€') < p(€). Thus,

SA(S=w)}r{f <u}

Moreover, if the T-move reaches a leaf of MT then the resulting state satisfies Ip otlierwise
it satisfies &. Tlms,
{PA(A=uw)}r{lh Vv &}

Case 2: M;(§) = RT ().
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In this case, 0 = M, (RT(€)). o = ® implies that 35 : 0 = Ma(n) A 1y € Q therefore 1y and
RT (&) are roots to identical subtrees of MT and thus RT(§) € Q. Thus, RT(€) is uot a
leaf in MT aud there exists 7 such that ¢ | En(r) and we conclude

E(PA=uw))— En(r)

Moreover, the T-move reaches an immediate successor € of € in MT* and we know p(€') <
ol§):

{@A(b=u)}r{é <uw}
If the r-move reaches a leaf of MT then the resulting state satisfies I otherwise it satisfies
®. Thus,

{DA(S=u)}r{lv&}
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